Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetrakis(picolinato- $\boldsymbol{\kappa}^{2} N, O$)zirconium(IV) dihydrate

Maryke Steyn,* Hendrik G. Visser, Andreas Roodt and T. J. Muller
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
Correspondence e-mail: steynm@ufs.ac.za

Received 4 August 2011; accepted 5 August 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.037 ; w R$ factor $=0.100 ;$ data-to-parameter ratio $=17.0$.

In the title compound, $\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Zr}^{\mathrm{IV}}$ atom is located on a crystallographic fourfold rotoinversion axis ($\overline{4}$) and is coordinated by four picolinate anions with $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{Zr}-\mathrm{N}$ distances of 2.120 (2) and 2.393 (2) Å, respectively. An approximate square-antiprismatic coordination polyhedron of the N, O-coordination ligand atoms is formed, with a distortion towards dodecahedral geometry. The crystal packing is stabilized by intermolecular $\pi-\pi$ interactions between adjacent picolinate rings [centroid-centroid distances $=3.271$ (1) and $3.640(2) \AA$, as well as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the solvent molecules and the coordinated ligands, thereby linking the molecules into a supramolecular threedimensional network.

Related literature

For N, O - and O, O^{\prime}-bidentate ligand complexes of zirconium and hafnium, see: Steyn et al. (2008); Viljoen et al. (2010a,b). For relevant studies of N, O - and O, O^{\prime}-bidentate ligands with other transition metal atoms, see: Graham et al. (1991); Mtshali et al. (2006); Roodt et al. (2011); Schutte et al. (2008); Steyn et al. (1997); Van Aswegen et al. (1991); Van der Westhuizen et al. (2010).

Experimental

Crystal data
$\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=615.66$
Tetragonal, $P 4_{2} / n$
$a=11.083$ (5) A
$c=9.548$ (5) \AA
$V=1172.8(10) \AA^{3}$

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.942, T_{\text {max }}=0.977$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.10$
1477 reflections
87 parameters
1 restraint
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.12 \times 0.09 \times 0.04 \mathrm{~mm}$

27234 measured reflections
1477 independent reflections 1271 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.074$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 03-\mathrm{H} 03 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.94(2)$	$1.89(2)$	$2.829(3)$	$175(5)$
Symmetry code: (i) y				

Symmetry code: (i) $y,-x+\frac{3}{2},-z+\frac{3}{2}$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2119).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Graham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. \& Leipoldt, J. G. (1991). Transition Met. Chem., 16, 193-195.

Mtshali, T. N., Purcell, W., Visser, H. G. \& Basson, S. S. (2006). Polyhedron, 25, 2415-2425.
Roodt, A., Visser, H. G. \& Brink, A. (2011). Crystallogr. Rev. Accepted. doi:10.1080/0889311X.2011.593032.
Schutte, M., Visser, H. G. \& Roodt, A. (2008). Acta Cryst. E64, m1610-m1611. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steyn, G. J. J., Roodt, A., Poletaeva, I. A. \& Varshavsky, Y. S. (1997). J. Organomet. Chem. 536, 197-205.

metal-organic compounds

Steyn, M., Roodt, A. \& Steyl, G. (2008). Acta Cryst. E64, m827.
Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Lamprecht, G. J., Roodt, A. \& Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369-371.

Van der Westhuizen, H. J., Meijboom, R., Schutte, M. \& Roodt, A. (2010). Inorg. Chem. 49, 9599-9608.

Viljoen, J. A., Visser, H. G. \& Roodt, A. (2010a). Acta Cryst. E66, m603-m604. Viljoen, J. A., Visser, H. G. \& Roodt, A. (2010b). Acta Cryst. E66, m1053m1054.

supplementary materials

Tetrakis(picolinato- $\kappa^{\mathbf{2}} \boldsymbol{N}, O$)zirconium(IV) dihydrate

M. Steyn, H. G. Visser, A. Roodt and T. J. Muller

Comment

The introduction of N, O-bidentate ligands with the oxine or aminovinylketone backbones significantly influences both steric and electronic properties of transition metal centres as illustrated by literature examples (Graham et al., 1991; Mtshali et al., 2006; Roodt et al., 2011; Schutte et al., 2008; Steyn et al., 1997; Van Aswegen et al., 1991; Van der Westhuizen et al., 2010). This study is part of ongoing research initiatives investigating coordination behaviour of $O, O^{\prime}-$ and N, O,-bidentate ligands with zirconium(IV) and hafnium(IV) for possible separation of these two metals from base ore sources (Steyn et al., 2008; Viljoen et al., 2010a,b).

The title compound, $\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, with $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ as picolinic acid, crystallizes in the form of colourless cubic crystals in the tetragonal $\mathrm{P}_{2} / \mathrm{n}$ space group. The $\mathrm{Zr}^{\mathrm{IV}}$ atom, located on a crystallographic fourfold rotoinversion axis (4), is coordinated to four picolinic acid ligands (Fig. 1). The assymetric unit contains half a solvent molecule located on a twofold axis. The $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{Zr}-\mathrm{N}$ bond lengths are 2.120 (2) \AA and 2.393 (2) \AA, respectively, with a $\mathrm{N} — \mathrm{Zr}-\mathrm{O}$ bite angle of $69.79(7)^{\circ}$. The coordination polyhedron around the metal centre is an approximate square antiprism of the N, O-coordination ligand atoms, with a distortion towards dodecahedral geometry. The crystal packing is stabilized by intermolecular $\pi-\pi$ interactions (Fig. 2), between adjacent picolinato rings, with interplanar and centroid-to-centroid distances of 3.271 (1) \AA and 3.640 (2) \AA, respectively. Further stabilization of the crystal structure is afforded by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Fig. 3) between the carbonyl group of the picolinato ligands and the solvent water molecules. All of these interactions serve to link the molecules into a supramolecular three-dimensional network.

Experimental

Chemicals were purchased from Sigma-Aldrich and used as received. $\mathrm{ZrCl}_{4}(103.3 \mathrm{mg}, 0.463 \mathrm{mmol})$ and picolinic acid (PicA) ($175.2 \mathrm{mg}, 1.423 \mathrm{mmol}$) was separately dissolved in DMF $\left(2.5 \mathrm{ml}\right.$ ea) and heated to $60{ }^{\circ} \mathrm{C}$. The PicA solution was added drop-wise to the zirconium solution and stirred at $60^{\circ} \mathrm{C}$ for 30 minutes. The reaction solution was removed from heating, covered and left to stand for crystallization. White cubic crystals, suitable for single-crystal X-ray diffraction, formed after 30 days (yield: $178 \mathrm{mg}, 86 \%$).

Refinement

The aromatic H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and constrained to ride on their parent atoms with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The hydrogen atoms of the solvent water molecule were located on the Fourier difference map and refined isotropically. The highest residual electron density was located $0.74 \AA$ from O1.

supplementary materials

Figures

Fig. 1. Representation of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. Graphical illustration of $\pi-\pi$ interaction and stacking between different PicA-ligands of neighboring molecules to form a three-dimensional network (displacement ellipsoids are drawn at the 50% probability level). Hydrogen atoms and solvent water molecules omitted for clarity.

Tetrakis(picolinato- ${ }^{\mathbf{2}} \boldsymbol{N}, O$) zirconium(IV) dihydrate

Crystal data

$\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$D_{\mathrm{x}}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=615.66$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Tetragonal, $P 4_{2} / n$	Cell parameters from 9933 reflections
Hall symbol: -P 4 bc	$\theta=2.6-28.4^{\circ}$
$a=11.083(5) \AA$	$\mu=0.54 \mathrm{~mm}^{-1}$
$c=9.548(5) \AA$	$T=100 \mathrm{~K}$
$V=1172.8(10) \AA^{3}$	Cuboid, colourless
$Z=2$	$0.12 \times 0.09 \times 0.04 \mathrm{~mm}$
$F(000)=624$	

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer
Radiation source: fine-focus sealed tube graphite

1477 independent reflections
1271 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$

ω and φ scans

Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.942, T_{\max }=0.977$
27234 measured reflections
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-14 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$

$$
w R\left(F^{2}\right)=0.100
$$

$S=1.10$

1477 reflections
87 parameters
1 restraint

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0415 P)^{2}+2.5407 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.92$ e \AA^{-3}

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 $\mathrm{s} /$ frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to $\theta=28.40^{\circ}$ with 99.5% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Zr1	0.25	0.25	0.75	$0.01305(15)$
O1	$0.41797(14)$	$0.31522(14)$	$0.82454(18)$	$0.01305(15)$
O2	$0.56146(18)$	$0.33223(18)$	$0.9859(2)$	$0.0263(4)$
C3	$0.4700(2)$	$0.1154(2)$	$1.1212(3)$	$0.0195(5)$
H3	0.5415	0.144	1.1601	0.023^{*}
N1	$0.31289(18)$	$0.13671(18)$	$0.9505(2)$	$0.0157(4)$
C2	$0.4174(2)$	$0.1737(2)$	$1.0089(3)$	$0.0169(5)$
C5	$0.3088(2)$	$-0.0267(2)$	$1.1131(3)$	$0.0206(5)$
H5	0.2707	-0.0959	1.1461	0.025^{*}

C6	$0.2603(2)$	$0.0372(2)$	$1.0016(3)$	$0.0178(5)$
H6	0.1891	0.01	0.961	0.021^{*}
C4	$0.4143(2)$	$0.0137(2)$	$1.1748(3)$	$0.0222(5)$
H4	0.4473	-0.0269	1.251	0.027^{*}
C1	$0.4728(2)$	$0.2822(2)$	$0.9379(3)$	$0.0183(5)$
O03	0.25	0.75	$0.3385(4)$	$0.0472(9)$
H03A	$0.274(4)$	$0.815(3)$	$0.396(4)$	$0.068(15)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zr1	$0.01054(17)$	$0.01054(17)$	$0.0181(2)$	0	0	0
O1	$0.01054(17)$	$0.01054(17)$	$0.0181(2)$	0	0	0
O2	$0.0201(9)$	$0.0257(10)$	$0.0332(11)$	$-0.0070(8)$	$-0.0066(8)$	$0.0008(8)$
C3	$0.0170(11)$	$0.0211(12)$	$0.0205(12)$	$0.0015(9)$	$-0.0014(9)$	$-0.0035(10)$
N1	$0.0141(9)$	$0.0136(9)$	$0.0194(10)$	$-0.0005(8)$	$0.0000(8)$	$-0.0002(8)$
C2	$0.0145(11)$	$0.0160(11)$	$0.0203(12)$	$0.0000(9)$	$0.0007(9)$	$-0.0030(9)$
C5	$0.0221(12)$	$0.0178(12)$	$0.0220(13)$	$0.0026(9)$	$0.0043(10)$	$0.0027(10)$
C6	$0.0158(11)$	$0.0154(11)$	$0.0223(12)$	$-0.0003(9)$	$0.0005(9)$	$0.0003(9)$
C4	$0.0236(13)$	$0.0240(13)$	$0.0191(13)$	$0.0056(10)$	$0.0003(10)$	$0.0020(10)$
C1	$0.0148(11)$	$0.0171(11)$	$0.0231(12)$	$-0.0001(9)$	$0.0006(9)$	$-0.0032(9)$
O03	$0.059(2)$	$0.038(2)$	$0.045(2)$	$-0.0011(18)$	0	0

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zr} 1-\mathrm{O1}{ }^{\text {i }}$	2.1200 (18)	C3-C4	1.384 (4)
Zr1-O1	2.1200 (18)	C3-H3	0.93
$\mathrm{Zr} 1-\mathrm{O} 1^{\text {ii }}$	2.1200 (18)	N1-C6	1.340 (3)
$\mathrm{Zr} 1-\mathrm{O} 1^{\text {iii }}$	2.1200 (18)	N1-C2	1.349 (3)
Zr1-N1 ${ }^{\text {i }}$	2.393 (2)	C2-C1	1.511 (4)
$\mathrm{Zr} 1-\mathrm{N} 1^{\text {ii }}$	2.393 (2)	C5-C4	1.384 (4)
$\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	2.393 (2)	C5-C6	1.386 (4)
Zr1—N1	2.393 (2)	C5-H5	0.93
O1-C1	1.294 (3)	C6-H6	0.93
O2-C1	1.218 (3)	C4-H4	0.93
C3-C2	1.381 (4)	O03-H03A	0.941 (19)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 1$	96.47 (3)	N1 ${ }^{\text {i }}-\mathrm{Zr} 1-\mathrm{N} 1$	129.78 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 1^{\mathrm{ii}}$	96.47 (3)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Zr} 1-\mathrm{N} 1$	73.76 (11)
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 1^{\text {ii }}$	140.77 (10)	$\mathrm{N} 1^{\text {iii }}-\mathrm{Zr} 1-\mathrm{N} 1$	129.78 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 1^{\text {iii }}$	140.77 (10)	C1-O1-Zr1	126.61 (15)
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 1^{\text {iii }}$	96.47 (3)	C2-C3-C4	118.7 (2)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Zr} 1-\mathrm{O} 1^{\text {iii }}$	96.47 (3)	C2-C3-H3	120.7
$\mathrm{O} 1^{\text {i }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {i }}$	69.79 (7)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{N} 1^{\text {i }}$	145.95 (7)	C6-N1-C2	118.2 (2)
$\mathrm{Ol}{ }^{\mathrm{ii}}-\mathrm{Zrl}-\mathrm{Nl}^{\text {i }}$	73.05 (7)	C6-N1-Zr1	126.65 (17)

sup-4

$\mathrm{O1}{ }^{\text {iii }}-\mathrm{Zrl}-\mathrm{N} 1^{\text {i }}$	78.95 (7)	C2-N1-Zr1	114.94 (16)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {ii }}$	145.95 (7)	N1-C2-C3	122.8 (2)
$\mathrm{O} 1-\mathrm{Zr1}-\mathrm{N} 1^{\text {ii }}$	78.95 (7)	N1-C2-C1	113.9 (2)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {ii }}$	69.79 (7)	C3-C2-C1	123.3 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {ii }}$	73.05 (7)	C4-C5-C6	119.3 (2)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {ii }}$	129.78 (7)	C4-C5-H5	120.4
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	78.95 (7)	C6-C5-H5	120.4
$\mathrm{O} 1-\mathrm{Zr1}-\mathrm{N} 1^{\text {iii }}$	73.05 (7)	N1-C6-C5	122.1 (2)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	145.95 (7)	N1-C6-H6	118.9
$\mathrm{O} 1^{\text {iii }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	69.79 (7)	C5-C6-H6	118.9
$\mathrm{N} 1^{\text {i }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	73.76 (11)	C3-C4-C5	118.9 (2)
$\mathrm{N} 1^{\text {ii }}-\mathrm{Zr} 1-\mathrm{N} 1^{\text {iii }}$	129.78 (7)	C3-C4-H4	120.6
$\mathrm{Ol}{ }^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{N} 1$	73.05 (7)	C5-C4-H4	120.6
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{N} 1$	69.79 (7)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.4 (2)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Zr} 1-\mathrm{N} 1$	78.95 (7)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	121.4 (2)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Zr} 1-\mathrm{N} 1$	145.95 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	114.2 (2)

Symmetry codes: (i) $y,-x+1 / 2,-z+3 / 2$; (ii) $-x+1 / 2,-y+1 / 2, z$; (iii) $-y+1 / 2, x,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 03-\mathrm{H} 03 \mathrm{~A} \cdots \mathrm{O} 2^{\text {iv }}$	$0.94(2)$	$1.89(2)$	$2.829(3)$	$175(5)$

Symmetry codes: (iv) $y,-x+3 / 2,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

